

HOW DOES THE EARLY READING TRAJECTORY IN NGUNI LANGUAGES DIFFER WHEN WE INTERVENE OR DON'T?

SMALL AND BIG PROBLEM SPACES IN READING

Lilli Pretorius

Department of Linguistics and Modern Languages, Unisa

13 September 2019

WHAT IS THE PURPOSE OF SCIENCE?

"The very core of why we do science (is) to prevent ourselves from being misled by our own experiences and prejudices" (Ben Goldacre. 2008. *Bad Science*. London: Harper Collins, p xii.).

"The researches of so many eminent scientific men have thrown so much darkness upon the subject that if they continue their research we will soon know nothing" (Artemus Ward).

OUTLINE

Small and big problem spaces

- Some theory
- Some neurocognition
- Some decoding
- Some reading comprehension
- Some data
- Some relationships

Simple straightforwardness or nuanced complexity?

SMALL AND LARGE PROBLEM SPACES

A large problem space is complex and challenging; it takes up a lot of our time and attention. It is very important. We can spend years on it and even then we don't necessarily reach the end. (We will probably have to spend a lot of money on it too....) But, oh, the joy of knowledge!

A small problem space is, well, small. It shouldn't take up much time and attention. It can be dealt with easily. It must do its job but it's not so important. (Do we really need to spend much money and time on it?)

SMALL AND LARGE PROBLEM SPACES IN READING

FIGURE 7.4. A representation of the various problem spaces associated with literacy.

Reading is all about comprehension, meaning making, vocabulary

Decoding? Oh yes, we need it, but it's a small problem space. Don't worry too much about it.

If we focus on the big things, the small things will fall into place.

WHAT HAPPENS WHEN SOMETHING GOES WRONG IN THE SMALL PROBLEM SPACE?

SMALL AND LARGE PROBLEM SPACES IN READING

FIGURE 7.4. A representation of the various problem spaces associated with literacy.

Country	Average Scale Score	Reading Achievement Distribution
Russian Federation	581 (2,2) h	
Singapore	576 (3,2) h	
Hong Kong SAR	569 (2,7) h	
reland	567 (2,5) h	
Finland	566 (1,8) h	
Poland	565 (2,1) h	
Northern Ireland	565 (2,2) h	
Norway (5)	559 (2,3) h	
Chinese Taipei	559 (2,0) h	
England	559 (1,9) h	
Latvia	558 (1,7) h	
Sw eden	555 (2,4) h	
Hungary	554 (2,9) h	
Bulgaria	552 (4,2) h	
United States	549 (3,1) h	
Lithuania	548 (2,6) h	
Italy	548 (2,2) h	
Denmark	547 (2,1) h	
Macao SAR	546 (1,0) h	
Netherlands	545 (1,7) h	
Australia	544 (2.5) h	
Czech Republic	543 (2.1) h	
Canada	543 (1.8) h	
Slovenia	542 (2.0) h	
Austria	541 (2.4) h	
Germany	537 (3.2) h	
Kazakhatan	536 (2.5) h	
Slovak Republic	535 (3.1) h	
Israel	530 (2.5) h	
Portugal	528 (2.3) h	
Spain	528 (1.7) h	
Belgium (Elemish)	525 (1.0) h	
New Zealand	523 (2.2) h	
France	511 (2.2) h	
PRIS Scale Centernoint	500	
Beloium (Erench)	497 (2.6)	
Chile	404 (2,0)	
Georgia	488 /2 81 1	
Trinidad and Tobaco	470 (2,0)	
Azorbaijan	472 (4 2) 1	
Malta	452 (4,2)	
Libited Arab Emirates	452 (1,0)	
Dahrain	460 (3,2) 1	
Catar	440 (2,3)	
Castal Castal A subin	442 (1,8)	
saudi Arabia	430 (4,2) 1	
ran, islamic rep. of	428 (4,0) 1	
Uman	918 (3,3)	
Ruw alt	393 (4,1)	
Morocco	358 (3,9)	
Lgypt	330 (5,6) 1	
South Africa	320 (4,4)	

CHILDREN WHO CANNOT READ AT ALL (ZERO SCORES IN FOUNDATIONAL LITERACY)

	Grad	de 1	Grade 2	Grade 3	
Letter-sounds	Nigeria Ghana Setswana Zulu (rural)	90% 30-70% 18% 56%	Setswana 8% Xhosa 9% (urban) Zulu 18% (rural) Xhosa 12% (EC)		
Word reading	Ghana Zulu/Swati Setswana Zulu (rural)	54-92% 45% 60% 80%	36% Setswana Xhosa 42% Zulu 32%	Swahili, Kenya Home Lang, Kenya Home Lang, Uganda Xhosa Zulu	17% 18% 38% 28% 19%
Composite literacy score			52% Zambia (Whole L) 39% Zambia (phonics)		

TRAJECTORY

Latin trans 'across' + jacere 'throw' (first used in English in the late 17th century)

The path followed by a projectile flying or an object moving under the action of given forces

The reading development path of learners prompted by the action of (mainly) classroom forces

THE READING PYRAMID

COGNITIVE COMPONENTS OF READING

NEUROLINGUISTIC COGNITIVE AFFECTIVE SOCIOCULTURAL MODEL OF READING

THE LANGUAGE BRAIN AND THE READING BRAIN

Reading is a recent cultural tool in human history, tied up with the development of writing systems (± 5000 years).

We are not genetically programmed to acquire reading as we do language. Reading is not 'biological' or 'natural'. It must be learned.

The reading brain uses existing evolutionary structures and processes to establish new neuronal pathways to 'read' written language.

- Form new areas of specialisation
- >make new connections
- >new circuits become automatic

THE VISUAL WORD FORM AREA – WHY 250 MILLISECONDS MATTER (Dehaene 2009)

Brain divides visual labour into categories, each processed by specific patch in the visual cortex: landscape; faces; tools/objects; digits

Letter/word recognition is located at the same coordinate – the left ventral occipital-temporal region (Brodmann 37)

Invariance principle; we have to learn to recognise words regardless of how they appear – font, size, character. Attention to relevant details develops with practice. b d

After about 300ms of seeing words, the visual cortex links with language networks

Basic neuronal mechanisms linking occipital lobe to the language domains in temporal and frontal lobes can be established over a period of 2-3 years – but many more years to develop fast, efficient processing.

WHAT DO WE MEAN BY SKILLED READING?

Does reading as a construct change over time?

Does reading represent the same cognitive processes at different points in time?

Is what happens in the brain of a skilled Grade 3 reader the same as what happens in the brain of a skilled Grade 1 reader?

Different processes come into play at different stages of development and contribute differentially to performance as proficiency increases

Ph Awareness	Word reading	Context Fluency	Comprehension	M Awareness
Letter-sounds		(ORF)	literal inferential	
accuracy	speed	automaticity	metacogniti	on

The importance of some processes as drivers of early reading development diminish as proficiency increases and are replaced by qualitatively different processes

Building decoding impetus for comprehension: We need a lift off!

COMPONENTS OF DECODING

DECODING

Constrained skills They enable reading Necessary but not sufficient Early mastery critical (mid Grade 2)

VOCABULARY & COMPREHENSION

Unconstrained skills

Lifelong development (Paris 2005)

Patterns of Literacy among US students (Reardon, Valentino & Shores 2012)

Figure 1. Percentage of Proficient Students, by Literary Skill, Grades K-8

ORF

etter sound

LETTER-SOUND KNOWLEDGE: LETTERS CORRECT PER MINUTE

(percentage of learners scoring zero is given in brackets where possible)

		Grade R	Grade 1	Grade 2	Grade 3
Clayton et al. 2019	English UK	27.9			
Good et al. 2000	English USA		47		
Jukes et al. 2017 (n=2,220)	Swahili Int # Swahili Con		10.4 4.8	11.4 6.6	
Piper et al. 2018 (n= 4,385)	Swahili Int (PRIMR) Kenyan Int Home languages Swahili Con		8 4 7	17 11 13	
Taylor et al. 2017 (n = 2,600*)	Setswana coaching Int Setswana Con		25(0=18%) 22	43 (0=8%) 39	
Spaull et al. 2018 (n = 740)	N Sotho Tsonga Zulu			31 35 27	43 47 36
Menendez & Ardington 2018 (n = 8,776)	Xhosa baseline Zulu baseline			19 15	31 18
Saldru/Funda Wande (n=1,180)	Xhosa baseline		5 (0=52%)	28(0=28%)	
ZenLit (2018) (n= 990)	Xhosa Int (urban) Xhosa Con (urban) Zulu Con (rural)		<mark>46 (0=1%)</mark> 24 (0=8%) 5(0=55%)	<mark>66 (0=1%)</mark> 41(0=6%) 11(0=35%)	<mark>74(0=0%)</mark> 47(0=2%) 16(0=27%)

SINGLE CONSONANTS VS DIGRAPHS/TRIGRAPHS

SALDRU | Funda Wande Coaching Evaluation May 2019

	Mean letters	Percentage of
	correct per minute	learners obtaining
		zero
Grade 2 single letters	28	12.4%
digraphs/trigraphs	10	52%

PERCEPTUAL LEARNING OF THE CODE

- Initially beginners cannot easily tell letters apart
- Practice is necessary for habituation
- Larger numbers of letters take longer to tell apart and automatize
- Notion of a word is different in African languages
- Dense print is read more slowly in the conjunctive orthography of Zulu and Xhosa

Ndiyahamba ngomso. Ndilungiselela uhambo. Kufuneka ndilungiselele nosana. Nalo luyahamba. Ndinetikiti lohambo.

(I'm going tomorrow. I'm preparing for the journey. I must also prepare the baby. She too is going. I have a ticket for the journey.)

VISUAL SIMILARITY/DISSIMILARITY

It is easier to develop automaticity in reading when orthographies have visually dissimilar words - common amongst English words.

In contrast, the complex morphology of agglutinating languages results in many letter sequences with visually similar CV patterns. There are over 30 visually similar syllable sequences in Zulu (Land 2016)

Ndizakuthanda	I will love you
Ndisezakuthanda	I will still love you
Ndisezanithanda	I will still love you (all)

This requires attention to detail and hence more cognitive work while reading; there is loss of meaning if any of the bits within the linguistic unit are decoded inaccurately.

Who's gaining fluency and comprehension?

Grade 1 Oral Reading Comprehension

Who's lifting off where in Grade 3?

Zenlit Nguni data 2017 (Xhosa and Zulu (n-330)

Grade 3 Word Reading (wcpm)

Grade 3 Oral Reading Comprehension

MULTIPLE REGRESSION: What predicts WORD READING in NGUNI languages(Zulu/Xhosa) n = 988 Adjusted R square = 0.59

	Beta	Standard error	Beta β	р
Letter sounds	.37	.017	.60	.000
Phonemic Awareness	.84	.100	.22	.000

MULTIPLE REGRESSION: What predicts READING COMPREHENSION in Nguni languages(Zulu/Xhosa) n = 988 Adjusted R square = 0.66

	Beta	Standard error	Beta β	p
Letter sounds	.006	.002	.08	.004
Phonemic Awareness	.046	.01	.10	.000
Word reading	028	.006	22	.000
ORF	.089	.004	.89	.000

THANK YOU

Human history becomes more and more a race between education and catastrophe HG Wells

